Serveur d'exploration Santé et pratique musicale

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Identifying cochlear implant channels with poor electrode-neuron interfaces: electrically evoked auditory brain stem responses measured with the partial tripolar configuration.

Identifieur interne : 001389 ( Main/Exploration ); précédent : 001388; suivant : 001390

Identifying cochlear implant channels with poor electrode-neuron interfaces: electrically evoked auditory brain stem responses measured with the partial tripolar configuration.

Auteurs : Julie Arenberg Bierer [États-Unis] ; Kathleen F. Faulkner ; Kelly L. Tremblay

Source :

RBID : pubmed:21178633

Descripteurs français

English descriptors

Abstract

OBJECTIVES

The goal of this study was to compare cochlear implant behavioral measures and electrically evoked auditory brain stem responses (EABRs) obtained with a spatially focused electrode configuration. It has been shown previously that channels with high thresholds, when measured with the tripolar configuration, exhibit relatively broad psychophysical tuning curves. The elevated threshold and degraded spatial/spectral selectivity of such channels are consistent with a poor electrode-neuron interface, defined as suboptimal electrode placement or reduced nerve survival. However, the psychophysical methods required to obtain these data are time intensive and may not be practical during a clinical mapping session, especially for young children. Here, we have extended the previous investigation to determine whether a physiological approach could provide a similar assessment of channel functionality. We hypothesized that, in accordance with the perceptual measures, higher EABR thresholds would correlate with steeper EABR amplitude growth functions, reflecting a degraded electrode-neuron interface.

DESIGN

Data were collected from six cochlear implant listeners implanted with the HiRes 90k cochlear implant (Advanced Bionics). Single-channel thresholds and most comfortable listening levels were obtained for stimuli that varied in presumed electrical field size by using the partial tripolar configuration, for which a fraction of current (σ) from a center active electrode returns through two neighboring electrodes and the remainder through a distant indifferent electrode. EABRs were obtained in each subject for the two channels having the highest and lowest tripolar (σ = 1 or 0.9) behavioral threshold. Evoked potentials were measured with both the monopolar (σ = 0) and a more focused partial tripolar (σ ≥ 0.50) configuration.

RESULTS

Consistent with previous studies, EABR thresholds were highly and positively correlated with behavioral thresholds obtained with both the monopolar and partial tripolar configurations. The Wave V amplitude growth functions with increasing stimulus level showed the predicted effect of shallower growth for the partial tripolar than for the monopolar configuration, but this was observed only for the low-threshold channels. In contrast, high-threshold channels showed the opposite effect; steeper growth functions were seen for the partial tripolar configuration.

CONCLUSIONS

These results suggest that behavioral thresholds or EABRs measured with a restricted stimulus can be used to identify potentially impaired cochlear implant channels. Channels having high thresholds and steep growth functions would likely not activate the appropriate spatially restricted region of the cochlea, leading to suboptimal perception. As a clinical tool, quick identification of impaired channels could lead to patient-specific mapping strategies and result in improved speech and music perception.


DOI: 10.1097/AUD.0b013e3181ff33ab
PubMed: 21178633
PubMed Central: PMC3082606


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Identifying cochlear implant channels with poor electrode-neuron interfaces: electrically evoked auditory brain stem responses measured with the partial tripolar configuration.</title>
<author>
<name sortKey="Bierer, Julie Arenberg" sort="Bierer, Julie Arenberg" uniqKey="Bierer J" first="Julie Arenberg" last="Bierer">Julie Arenberg Bierer</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Speech and Hearing Sciences, University of Washington, Seattle, Washington 98105, USA. jbierer@u.washington.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Speech and Hearing Sciences, University of Washington, Seattle, Washington 98105</wicri:regionArea>
<orgName type="university">Université de Washington</orgName>
<placeName>
<settlement type="city">Seattle</settlement>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Faulkner, Kathleen F" sort="Faulkner, Kathleen F" uniqKey="Faulkner K" first="Kathleen F" last="Faulkner">Kathleen F. Faulkner</name>
</author>
<author>
<name sortKey="Tremblay, Kelly L" sort="Tremblay, Kelly L" uniqKey="Tremblay K" first="Kelly L" last="Tremblay">Kelly L. Tremblay</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011 Jul-Aug</date>
<idno type="RBID">pubmed:21178633</idno>
<idno type="pmid">21178633</idno>
<idno type="doi">10.1097/AUD.0b013e3181ff33ab</idno>
<idno type="pmc">PMC3082606</idno>
<idno type="wicri:Area/Main/Corpus">001503</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001503</idno>
<idno type="wicri:Area/Main/Curation">001503</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001503</idno>
<idno type="wicri:Area/Main/Exploration">001503</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Identifying cochlear implant channels with poor electrode-neuron interfaces: electrically evoked auditory brain stem responses measured with the partial tripolar configuration.</title>
<author>
<name sortKey="Bierer, Julie Arenberg" sort="Bierer, Julie Arenberg" uniqKey="Bierer J" first="Julie Arenberg" last="Bierer">Julie Arenberg Bierer</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Speech and Hearing Sciences, University of Washington, Seattle, Washington 98105, USA. jbierer@u.washington.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Speech and Hearing Sciences, University of Washington, Seattle, Washington 98105</wicri:regionArea>
<orgName type="university">Université de Washington</orgName>
<placeName>
<settlement type="city">Seattle</settlement>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Faulkner, Kathleen F" sort="Faulkner, Kathleen F" uniqKey="Faulkner K" first="Kathleen F" last="Faulkner">Kathleen F. Faulkner</name>
</author>
<author>
<name sortKey="Tremblay, Kelly L" sort="Tremblay, Kelly L" uniqKey="Tremblay K" first="Kelly L" last="Tremblay">Kelly L. Tremblay</name>
</author>
</analytic>
<series>
<title level="j">Ear and hearing</title>
<idno type="eISSN">1538-4667</idno>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acoustic Stimulation (MeSH)</term>
<term>Adult (MeSH)</term>
<term>Aged (MeSH)</term>
<term>Artifacts (MeSH)</term>
<term>Auditory Pathways (cytology)</term>
<term>Auditory Pathways (physiology)</term>
<term>Auditory Threshold (physiology)</term>
<term>Brain Mapping (MeSH)</term>
<term>Cochlear Implantation (methods)</term>
<term>Cochlear Implants (MeSH)</term>
<term>Deafness (physiopathology)</term>
<term>Deafness (therapy)</term>
<term>Electrodes, Implanted (MeSH)</term>
<term>Evoked Potentials, Auditory, Brain Stem (physiology)</term>
<term>Female (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Male (MeSH)</term>
<term>Middle Aged (MeSH)</term>
<term>Neurons (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adulte (MeSH)</term>
<term>Adulte d'âge moyen (MeSH)</term>
<term>Artéfacts (MeSH)</term>
<term>Cartographie cérébrale (MeSH)</term>
<term>Femelle (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Implantation cochléaire (méthodes)</term>
<term>Implants cochléaires (MeSH)</term>
<term>Mâle (MeSH)</term>
<term>Neurones (physiologie)</term>
<term>Potentiels évoqués auditifs du tronc cérébral (physiologie)</term>
<term>Seuil auditif (physiologie)</term>
<term>Stimulation acoustique (MeSH)</term>
<term>Sujet âgé (MeSH)</term>
<term>Surdité (physiopathologie)</term>
<term>Surdité (thérapie)</term>
<term>Voies auditives (cytologie)</term>
<term>Voies auditives (physiologie)</term>
<term>Électrodes implantées (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Voies auditives</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Auditory Pathways</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Cochlear Implantation</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Implantation cochléaire</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Neurones</term>
<term>Potentiels évoqués auditifs du tronc cérébral</term>
<term>Seuil auditif</term>
<term>Voies auditives</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Auditory Pathways</term>
<term>Auditory Threshold</term>
<term>Evoked Potentials, Auditory, Brain Stem</term>
<term>Neurons</term>
</keywords>
<keywords scheme="MESH" qualifier="physiopathologie" xml:lang="fr">
<term>Surdité</term>
</keywords>
<keywords scheme="MESH" qualifier="physiopathology" xml:lang="en">
<term>Deafness</term>
</keywords>
<keywords scheme="MESH" qualifier="therapy" xml:lang="en">
<term>Deafness</term>
</keywords>
<keywords scheme="MESH" qualifier="thérapie" xml:lang="fr">
<term>Surdité</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Acoustic Stimulation</term>
<term>Adult</term>
<term>Aged</term>
<term>Artifacts</term>
<term>Brain Mapping</term>
<term>Cochlear Implants</term>
<term>Electrodes, Implanted</term>
<term>Female</term>
<term>Humans</term>
<term>Male</term>
<term>Middle Aged</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Adulte</term>
<term>Adulte d'âge moyen</term>
<term>Artéfacts</term>
<term>Cartographie cérébrale</term>
<term>Femelle</term>
<term>Humains</term>
<term>Implants cochléaires</term>
<term>Mâle</term>
<term>Stimulation acoustique</term>
<term>Sujet âgé</term>
<term>Électrodes implantées</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>OBJECTIVES</b>
</p>
<p>The goal of this study was to compare cochlear implant behavioral measures and electrically evoked auditory brain stem responses (EABRs) obtained with a spatially focused electrode configuration. It has been shown previously that channels with high thresholds, when measured with the tripolar configuration, exhibit relatively broad psychophysical tuning curves. The elevated threshold and degraded spatial/spectral selectivity of such channels are consistent with a poor electrode-neuron interface, defined as suboptimal electrode placement or reduced nerve survival. However, the psychophysical methods required to obtain these data are time intensive and may not be practical during a clinical mapping session, especially for young children. Here, we have extended the previous investigation to determine whether a physiological approach could provide a similar assessment of channel functionality. We hypothesized that, in accordance with the perceptual measures, higher EABR thresholds would correlate with steeper EABR amplitude growth functions, reflecting a degraded electrode-neuron interface.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>DESIGN</b>
</p>
<p>Data were collected from six cochlear implant listeners implanted with the HiRes 90k cochlear implant (Advanced Bionics). Single-channel thresholds and most comfortable listening levels were obtained for stimuli that varied in presumed electrical field size by using the partial tripolar configuration, for which a fraction of current (σ) from a center active electrode returns through two neighboring electrodes and the remainder through a distant indifferent electrode. EABRs were obtained in each subject for the two channels having the highest and lowest tripolar (σ = 1 or 0.9) behavioral threshold. Evoked potentials were measured with both the monopolar (σ = 0) and a more focused partial tripolar (σ ≥ 0.50) configuration.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Consistent with previous studies, EABR thresholds were highly and positively correlated with behavioral thresholds obtained with both the monopolar and partial tripolar configurations. The Wave V amplitude growth functions with increasing stimulus level showed the predicted effect of shallower growth for the partial tripolar than for the monopolar configuration, but this was observed only for the low-threshold channels. In contrast, high-threshold channels showed the opposite effect; steeper growth functions were seen for the partial tripolar configuration.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>These results suggest that behavioral thresholds or EABRs measured with a restricted stimulus can be used to identify potentially impaired cochlear implant channels. Channels having high thresholds and steep growth functions would likely not activate the appropriate spatially restricted region of the cochlea, leading to suboptimal perception. As a clinical tool, quick identification of impaired channels could lead to patient-specific mapping strategies and result in improved speech and music perception.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21178633</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>10</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1538-4667</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>32</Volume>
<Issue>4</Issue>
<PubDate>
<MedlineDate>2011 Jul-Aug</MedlineDate>
</PubDate>
</JournalIssue>
<Title>Ear and hearing</Title>
<ISOAbbreviation>Ear Hear</ISOAbbreviation>
</Journal>
<ArticleTitle>Identifying cochlear implant channels with poor electrode-neuron interfaces: electrically evoked auditory brain stem responses measured with the partial tripolar configuration.</ArticleTitle>
<Pagination>
<MedlinePgn>436-44</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1097/AUD.0b013e3181ff33ab</ELocationID>
<Abstract>
<AbstractText Label="OBJECTIVES" NlmCategory="OBJECTIVE">The goal of this study was to compare cochlear implant behavioral measures and electrically evoked auditory brain stem responses (EABRs) obtained with a spatially focused electrode configuration. It has been shown previously that channels with high thresholds, when measured with the tripolar configuration, exhibit relatively broad psychophysical tuning curves. The elevated threshold and degraded spatial/spectral selectivity of such channels are consistent with a poor electrode-neuron interface, defined as suboptimal electrode placement or reduced nerve survival. However, the psychophysical methods required to obtain these data are time intensive and may not be practical during a clinical mapping session, especially for young children. Here, we have extended the previous investigation to determine whether a physiological approach could provide a similar assessment of channel functionality. We hypothesized that, in accordance with the perceptual measures, higher EABR thresholds would correlate with steeper EABR amplitude growth functions, reflecting a degraded electrode-neuron interface.</AbstractText>
<AbstractText Label="DESIGN" NlmCategory="METHODS">Data were collected from six cochlear implant listeners implanted with the HiRes 90k cochlear implant (Advanced Bionics). Single-channel thresholds and most comfortable listening levels were obtained for stimuli that varied in presumed electrical field size by using the partial tripolar configuration, for which a fraction of current (σ) from a center active electrode returns through two neighboring electrodes and the remainder through a distant indifferent electrode. EABRs were obtained in each subject for the two channels having the highest and lowest tripolar (σ = 1 or 0.9) behavioral threshold. Evoked potentials were measured with both the monopolar (σ = 0) and a more focused partial tripolar (σ ≥ 0.50) configuration.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Consistent with previous studies, EABR thresholds were highly and positively correlated with behavioral thresholds obtained with both the monopolar and partial tripolar configurations. The Wave V amplitude growth functions with increasing stimulus level showed the predicted effect of shallower growth for the partial tripolar than for the monopolar configuration, but this was observed only for the low-threshold channels. In contrast, high-threshold channels showed the opposite effect; steeper growth functions were seen for the partial tripolar configuration.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">These results suggest that behavioral thresholds or EABRs measured with a restricted stimulus can be used to identify potentially impaired cochlear implant channels. Channels having high thresholds and steep growth functions would likely not activate the appropriate spatially restricted region of the cochlea, leading to suboptimal perception. As a clinical tool, quick identification of impaired channels could lead to patient-specific mapping strategies and result in improved speech and music perception.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bierer</LastName>
<ForeName>Julie Arenberg</ForeName>
<Initials>JA</Initials>
<AffiliationInfo>
<Affiliation>Department of Speech and Hearing Sciences, University of Washington, Seattle, Washington 98105, USA. jbierer@u.washington.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Faulkner</LastName>
<ForeName>Kathleen F</ForeName>
<Initials>KF</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tremblay</LastName>
<ForeName>Kelly L</ForeName>
<Initials>KL</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P30 DC004661</GrantID>
<Acronym>DC</Acronym>
<Agency>NIDCD NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R03 DC008883-03</GrantID>
<Acronym>DC</Acronym>
<Agency>NIDCD NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 DC007705</GrantID>
<Acronym>DC</Acronym>
<Agency>NIDCD NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R03 DC008883</GrantID>
<Acronym>DC</Acronym>
<Agency>NIDCD NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 DC005361</GrantID>
<Acronym>DC</Acronym>
<Agency>NIDCD NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P30 DC04661</GrantID>
<Acronym>DC</Acronym>
<Agency>NIDCD NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Ear Hear</MedlineTA>
<NlmUniqueID>8005585</NlmUniqueID>
<ISSNLinking>0196-0202</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000161" MajorTopicYN="N">Acoustic Stimulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016477" MajorTopicYN="N">Artifacts</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001306" MajorTopicYN="N">Auditory Pathways</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001309" MajorTopicYN="N">Auditory Threshold</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001931" MajorTopicYN="N">Brain Mapping</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019929" MajorTopicYN="N">Cochlear Implantation</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003054" MajorTopicYN="Y">Cochlear Implants</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003638" MajorTopicYN="N">Deafness</DescriptorName>
<QualifierName UI="Q000503" MajorTopicYN="N">physiopathology</QualifierName>
<QualifierName UI="Q000628" MajorTopicYN="Y">therapy</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004567" MajorTopicYN="Y">Electrodes, Implanted</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016057" MajorTopicYN="N">Evoked Potentials, Auditory, Brain Stem</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009474" MajorTopicYN="N">Neurons</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>12</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>12</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>10</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21178633</ArticleId>
<ArticleId IdType="doi">10.1097/AUD.0b013e3181ff33ab</ArticleId>
<ArticleId IdType="pmc">PMC3082606</ArticleId>
<ArticleId IdType="mid">NIHMS252879</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Acoust Soc Am. 1971 Feb;49(2):Suppl 2:467+</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5541744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Audiol Neurootol. 2004 Jul-Aug;9(4):214-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15205549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Acoust Soc Am. 1980 Mar;67(3):868-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6892642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Otolaryngol Head Neck Surg. 1981 Jan-Feb;89(1):125-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6784070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Otol Rhinol Laryngol. 1983 Jan-Feb;92(1 Pt 1):19-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6824273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hear Res. 1990 Apr;45(1-2):123-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2345111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hear Res. 1991 Jan;51(1):123-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2013539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hear Res. 1993 Mar;66(1):108-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8473242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Otol Rhinol Laryngol. 1993 Dec;102(12):909-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8285510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hear Res. 1994 Jul;78(1):11-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7961173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Otolaryngol. 1996 Mar;116(2):228-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8725521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Speech Hear Res. 1996 Jun;39(3):453-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8783126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hear Res. 1997 Jun;108(1-2):112-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9213127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IEEE Trans Biomed Eng. 1996 Aug;43(8):857-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9216159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Audiol Neurootol. 2004 Nov-Dec;9(6):341-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15467287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Neurosci. 2004 Dec;20(11):3131-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15579167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurophysiol. 2005 Jun;93(6):3339-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15659529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hear Res. 2005 Jul;205(1-2):83-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15953517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Otol Neurotol. 2005 Sep;26(5):957-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16151343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Otorhinolaryngol. 2006;64:31-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16891835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Acoust Soc Am. 2007 Mar;121(3):1642-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17407901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Acoust Soc Am. 2007 Aug;122(2):967-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17672645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ear Hear. 2008 Jun;29(3):435-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18344869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Acad Audiol. 2008 Feb;19(2):120-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18669126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hear Res. 2008 Aug;242(1-2):184-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18515023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Otolaryngol Head Neck Surg. 2009 Aug;141(2):247-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19643260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Acoust Soc Am. 2010 Jan;127(1):415-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20058987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ear Hear. 2010 Apr;31(2):247-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20090533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hear Res. 2010 Sep 1;268(1-2):93-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20580801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Amplif. 2010 Jun;14(2):84-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20724356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ear Hear. 2000 Apr;21(2):151-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10777022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ear Hear. 2001 Aug;22(4):268-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11527034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Otol Rhinol Laryngol. 2002 Nov;111(11):1008-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12450176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ear Hear. 2002 Dec;23(6):516-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12476089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Otolaryngol. 1977 Dec;103(12):691-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">588122</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Washington (État)</li>
</region>
<settlement>
<li>Seattle</li>
</settlement>
<orgName>
<li>Université de Washington</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Faulkner, Kathleen F" sort="Faulkner, Kathleen F" uniqKey="Faulkner K" first="Kathleen F" last="Faulkner">Kathleen F. Faulkner</name>
<name sortKey="Tremblay, Kelly L" sort="Tremblay, Kelly L" uniqKey="Tremblay K" first="Kelly L" last="Tremblay">Kelly L. Tremblay</name>
</noCountry>
<country name="États-Unis">
<region name="Washington (État)">
<name sortKey="Bierer, Julie Arenberg" sort="Bierer, Julie Arenberg" uniqKey="Bierer J" first="Julie Arenberg" last="Bierer">Julie Arenberg Bierer</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SanteMusiqueV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001389 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001389 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SanteMusiqueV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21178633
   |texte=   Identifying cochlear implant channels with poor electrode-neuron interfaces: electrically evoked auditory brain stem responses measured with the partial tripolar configuration.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21178633" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a SanteMusiqueV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Mon Mar 8 15:23:44 2021. Site generation: Mon Mar 8 15:23:58 2021